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Abstract  
 

      Static  overbooking  models  are  studied.   Suppose that each reservation shows  
up  independently,  and  that  the  probability  of  showing  up  is  identical  among  all  
reservations.   Then, the  random  show  demand  follows  the  binomial  distribution.  
However,  in practice  some overbooking modules assume that the show demand is  
the product of  the overbooking  level and the random show-up rate.  The decision  
model embedded in a commercial revenue management system is misspecified.  In  
this article, we explore the consequences of the modeling error.  Through numerical  
experiments, we find that the performance of the model with misspecification   
decreases as the show-up probability decreases.  Among our three choices of show-up  
rate distributions, the deterministic model performs worst, whereas the beta model  
performs best.  The normal show-up model performs better than the deterministic  
model, but worse than the beta model.  
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1 Introduction  
 
Overbooking is practiced  by  nearly  all  passenger  airlines.  They  may  accept  more 
reservations than their fixed capacity in order to compensate for cancellations and no-
shows, which could be as high as 50% (Smith et al., 1992).  The financial gain from 
the overbooking  practice  is  one  billion  US  dollars  or  more  (Bailey,  2007).   The  
overbooking  module becomes indispensable  to commercial revenue  management 
(RM) systems.  
 Generally speaking, the objective  of the overbooking model is to find an  
overbooking level/limit-the maximum number of reservations to hold at any time-that 
minimizes an expected total cost.  The expected total cost is calculated with respect to 
the probability distribution of the show  demand (show-ups), the total number of 
reservations that survive to  the  time  of  services.  The  total  cost  is  comprised  of  
an  oversale  cost,  which  occurs  if the  realized  show  demand  exceeds  the  
capacity,  and  a  spoilage  cost,  which  occurs  if  the realized show demand is less 
than the capacity.  
 The  functional  form  of  the  show-ups  can  affect  the  overbooking  level  
recommended by  the  model.   Two  models  with  different  specifications  of  the  
show  demand  may  not lead  to  the  same  expected  total  costs,  and  they  may  
yield  different  overbooking  levels. Models in practice commonly assume that the 
show demand is linear in the overbooking level;  i.e.,  given  the overbooking  level  x,  
the number  of show  demands  is  xR, where  the random  variable  R  is  referred  to  
as  the  show-up   rate.   Some  commercial  RM  systems assume  the  
normal/Gaussian  show-up  rate  distribution,  whose  the  mean  and  variance  
are periodically estimated from historical data (Popescu et al., 2006).  
 Although  the  above  specification  that  the  show  demand  equals  the  
product  of  the overbooking  level  and  the  show-up  rate  is  simple  and  quite  
prevalent  in  practice,  it  is theoretical  incorrect  under  certain  conditions.   
Suppose  that  (i)  each  reservation  shows up  independently,  and  that  (ii)  the  
probability  of  showing  up  is  identical  among  all reservations.   Then,  the  show  
demand  given  the  overbooking  level  x  follows  a  binomial distribution  with  
parameters  ),( x ,  where    is  the  show-up  probability.   Under  conditions  (i)  
and  (ii),  the  linear  assumption  in  the  airline's  decision  model  is  incorrect;  we 
say that a  model  misspecification  occurs, and that the airline makes a  modeling  
error.  
 In the RM practice,  there is an iterative process  in which the control (e.g., the 
overbooking level)  from the optimization model is enacted, the data (e.g., the realized  
show demands) are collected over several flights, the parameters (the mean and 
variance of the show-up rate distribution) are forecasted, and finally the new control is 
determined from the optimization model given the updated parameters.  In this article, 
we want to explore the consequences of the modeling error that the optimization 
model is misspecified.  
 In  the  optimization  model,  we  consider  three  show-up  rate  distributions,  
namely normal,  beta,  and  deterministic.   For  each  of  the  three  misspecified  
models,  we  provide a  closed-form  expression  for  the  overbooking  level. To  
benchmark  and  evaluate  these models, we construct a model, in which the show 
demand theoretically follows a binomial distribution.  We also obtain an optimal 
overbooking level with respect to the benchmark (binomial)  model.   To  study  the  
behavior  of  the  iterative  process  with  the  misspecified optimization  model,  we  
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perform  a  series  of  numerical  experiments.  We  find  that  as  the iterative process 
goes on for a long time, the sequence of the average costs with the given misspecified  
model  converges  almost  everywhere.   The  long run  average  cost  is  greater than 
the optimal expected cost with the binomial model.  In all tested problem instances, 
the  long-run  average  cost  with  the  deterministic  show-up  rate  is  worse  than  
that  with the normal distribution, whereas the latter is worse than that with the beta 
distribution. All three overbooking models are not robust to the modeling error.   
 Overbooking models can be broadly categorized into two types, namely 
dynamic and static  models.  In  the  static  models,  the  dynamics  of  reservation  
requests  and  customer cancellations  over  time  are  ignored.  In  the  dynamic  
models,  such  inter-temporal  effects are  explicitly  accounted  for.  An  overview  of  
the  overbooking  problem  can  be  found  in, e.g., Chapter 4 Talluri and van Ryzin 
(2004), and Chapter 9 Phillips (2005).  
 The  dynamic  model  is  often  formulated  as  a  Markov  decision  process.    
Examples of  the  dynamic  overbooking  problems  are  e.g.,  Chatwin  (1992)  and  
Subramanian  et  al. (1999).  In  Subramanian  et  al.  (1999),  the  booking  horizon  is  
divided  into  a  number  of decision  periods;  in  each  period  a  booking  request  
from  a  certain  fare  class  may  arrive, or  a  reservation  may  be  cancelled,    
nothing  happens.   If  the  booking  request  arrives, then the decision is whether or 
not to accept the request.  If the other two events happen, then no decision is needed.  
In the terminal period, the expected cost associated with no-shows is incurred.  The 
distribution of the show demand is assumed to follow a binomial distribution.    The  
objective  is  to  maximize  the  expected  total  net  contributions  over the  booking  
horizon  and  the  terminal  period.  Bertsimas  and  Popescu  (2003)  study  the 
network dynamic overbooking model, in which each itinerary may require more than 
one legs  to  get  from  an  origin  to  a  destination.   There  are  other  extensions  to  
the  dynamic overbooking problem, e.g., the inclusion of the multiple reservation 
classes in Karaesmen and van Ryzin (2004).  
 In this article, we do not study the dynamic overbooking  problem and 
consider only the static overbooking model, since it is similar to the overbooking 
module in most commercial  RM  systems.   As  in  Subramanian  et  al.  (1999), the  
classical  static  overbooking model assumes that the show demand follows a binomial 
distribution.  Thompson (1961) finds that the binomial distribution adequately fits the 
data collected from Tasman Empire  Airways.   Details  of  the  binomial  static  
overbooking  model  can  be  found  in,  e.g., Section 4.2.1 Talluri and van Ryzin 
(2004).  Our benchmark model resembles  the one in Talluri and van Ryzin (2004).  
 Unlike  the  binomial  model,  several  static  overbooking  models  assume  
that  the  show demand  is  the  product  of  the  overbooking  level  and  the  show-up  
rate.   This  approach is  found  in  e.g.,  Kasilingam  (1997),  Popescu  et  al.  (2006),  
and  Luo  et  al.  (2009).   The random  show-up  rate  can  be  modeled  using  a  
parametric  distribution,  such  as  uniform (e.g.,  Kasilingam  1997),  beta  (e.g.,  Luo  
et  al.  2009), and  normal.  Popescu  et  al.  (2006) argue  that  modeling  the  show-
up  rate  as  the  normal  random  variable,  which  is  quite common  in  practice,  in  
not  appropriate.  They  use  a  nonparametric  method  and  obtain a  histogram,  in  
which  the  number  and  size  of  bins  are  constructed  based  on  a  wavelet method.   
In  these  articles,  static  overbooking  problems  are  studied  alone  without  the 
iterative process.  In ours, the parameters of the show-up rate distribution are 
iteratively updated.  
 There  is  substantial  literature  in  econometrics  and  statistics  on  model  
misspecification.   For  instance,  Wu  (1973)  and  Hausman  (1978)  propose  
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"specification  tests"  for detecting if the regression model is misspecified.  In Presnell 
and Boos (2004) and Hansen et al. (2006), the decision  maker  hypothesizes  that its  
model is  misspecified,  carries  out the  specification  test,  and  generates  the  new  
model  if  there  is  insufficient  evidence  to reject the null hypothesis  of 
misspecification.  Unlike these papers, we do not endow the airline with the 
specification test.  Such extension would be an interesting future research direction.  
 There are few  operations  research  papers  on  model  misspecification.   
Cooper  et  al. (2006)  examine  consequences  of  model  misspecification  in  the  
two-class  passenger  RM problem.  The airline makes incorrect assumptions about 
customer behaviors and chooses its  optimal  booking  limit  according  to  the  
Littlewood's  rule.  The  paper  shows  that  the modeling error leads to the so called 
spiral-down effect.  The problem studied in Cooper et  al. (2006) is  the allocation  
problem  not an  overbooking  problem,  whereas  ours  is  the overbooking problem
 The  rest  of  the  paper  is  organized  as  follows.   In  Section  2,  we  present  
and  analyze the  overbooking  models.   The  iterative  process  is  described  in  
Section  3.   In  Section  4, we report the results of numerical experiments, and we 
conclude with some thoughts on future research directions in Section 5.  Proofs are in 
the Appendix.  
 
 
2 Overbooking Problem 
 
We  consider  a  static  overbooking  problem. Because  of  their  simplicity,  such  
models become  the  basis  of  the  most  widely  used  methodology  for  making  
overbooking  decisions  (Talluri  and  van  Ryzin,  2004).  Define  an  overbooking  
problem  as  determining  an overbooking  level  so  that  the  expected  total  cost  is  
minimized.   Since the  airline  operates many repeat flights, we can assume that the 
decision maker is risk neutral, and the objective  of minimizing  the expectation is 
appropriate. 
 Throughout  this  article,    denotes  the  set  of  natural  numbers,  and   
the  set  of integers.  For a real number  yy, )0,max( y   the positive part of   

 yy,  = nmax{ }; yn     the  floor of  y,  y  = nmin{ }; yn   the  ceiling  of  
y.  Assume  that  the capacity  is  a  known  constant  c.  If  an  overbooking  level  is  
set  to  x,  denote  the  random show demand as  S(x).  Let oa   0 be the per-unit 
oversale cost, and sa  0 the per-unit spoilage cost.  The expected  total cost is given 
as: 
 
                                                        )]([])([)(~ xScacxSaExf so                                  (1) 
 
In  (1),  the  first  and  second  terms  are  the  oversale  and  spoilage  costs,  
respectively.  The  oversale cost is computed as the per-unit oversale cost oa   times 
the number of show-ups that are denied boarding   ])([ cxS  .  The spoilage cost is 
found similarly.  Consider the following problem:  
 
                             )({min xf })]([]))([()( xSEacxSEaa sso                              (2) 
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Since caxfxf s )()(~ ,  an  optimal  overbooking  level  that  minimizes )(~ xf   
is  identical to the one that minimizes  f(x).  Henceforth, Problem (2) is studied.  
 The  airline  chooses  an  overbooking  level  that  minimizes  the  expected  
cost,  which  is calculated  with  respect  to  the  distribution  of  the  show  demand  
S(x).   In  practice,  it  is usually the case that the airline does not know the actual 
distribution of the show demand, but it makes  overbooking  decisions  based on  
perceived  models.  We will shortly describe some  perceived  models,  whose  
variants are embedded  in some  commercial  RM systems. To  evaluate  and  
benchmark  the  perceived  models,  we  also  develop  the  actual  model,  in which  
the  distribution  of  the  show  demand  is  known.  We  adopt  similar  terminology  
as in Evans and Honkapohja (2001) pp. 28-30.  
 
2.1 Actual Model 
 
Suppose  that x    reservations  have  been  made  in  advance  and  that  each  
reservation requires  a  single  seat  (no  group  booking).  Conditions  (i)  and  (ii)  are  
assumed  to  hold. With  the  actual  model,  the  show  demand   )(0 xS  follows  a  
binomial  distribution  with parameters  x and  .  Let  )(0 xf be the objective function 
in (2), where we replace  S(x) = )(0 xS . 
 
Proposition  1.  With  the  actual  model,  the  objective  function )(0 xf   is  convex  
on N.   An optimal  overbooking  level  is  given  as 
 
                             xx {maxarg*

0 }))1(()(: 0 sos acxSPaa                        (3) 
 
The  optimality  condition  in  (3)  can  be  explained  intuitively  as  follows.  Given  
that  the current  overbooking  level  is   x 1,  we  want  to  know  whether  to  
overbook  one  more seat.  We would incur an oversale cost, if the show demand from 
the current reservations [of  (x1)  seats]  is  at  least  the  capacity.  Hence,  the  
expected  marginal  oversale  cost  is ))1(( 0 cxSPao  . We would incur a spoilage 
cost, if the show demand from the current reservations is strictly less than the 
capacity.  Thus, the expected  marginal spoilage cost  is  ))1(( 0 cxSPas  .   If  the  
expected  marginal  spoilage  cost  is  at  least  the  expected  marginal  oversale  cost  
[i.e., ))1(())1(( 00 cxSPacxSPa so  ],  then  we  would overbook one more 
seat.  
 
2.2 Perceived Model 
 
Journal articles on overbooking problems (e.g., Popescu et al. 2006, and Kasilingam 
1996) suggest  that  airlines  typically  do  not  use  a  sophisticated  approach  to  
predict  the  show demand.   It  is  commonly  assumed  that  the  show  demand  is  
linear  in  the  overbooking level.   Specifically,  if  the  overbooking  level  is  equal  
to  x,  then  the  show  demand  is  xR , where  R  is  the  show-up  rate.  The  
distribution  of  the  show-up  rate  is  constructed  from historical data.    
 We restrict our attention to parametric methods and consider three 
distributions that the airline might use to model the show-up rate.  iR  be the random 
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show-up rate in perceived model  i.   1R has a degenerate distribution; i.e.,  P ( 1R =  ) 
= 1, where   (0, 1) represents  a deterministic  show-up rate. 2R has a normal 
distribution  with mean    and variance  2 , and  3R  follows a standard beta 
distribution with shape parameters  a and  b.                                                            
 The  deterministic  model  is  documented  in  e.g.,  Talluri  and  van  Ryzin  
(2004) p.147 and  Phillips  (2005)  p.  213.    A  variant  of  the  normal  model  is  
implemented  in  practice  (Popescu  et  al.,  2006).  The  beta  distribution  is  used  to  
model  the  show-up  rate  of air-cargo shipments  (Luo et al., 2009).  The support of 
the standard beta distribution is the  open  unit  interval  (0, 1),  whereas  that  of  the  
normal  distribution  is  the  whole  real line  (,).  Since  the  show-up  rate  
should  lie  between  zero  and  one,  the  beta  model is more theoretically sound than 
the normal model.  
 Suppose  that  the  airline  uses  perceived  model  i.  Let  iy  denote  the  
parameter  of  the show-up  distribution iR ; i.e., ),(),,(, 3

2
21 bayyy   . Let 

)|(. ii yf  be  the objective function in (2), where  S(x) =  x iR .  Denote  
)|(minarg)(~

iiii yxfyx  . Let )|(. ii yg   be the probability density  function of  iR  for 
each  i = 2, 3.  
 
Proposition 2.  For  each  i,  the  objective  function )|( ii yxf  is  convex  in  x.   With  

perceived model  1,  
1

11 )(~
y

cyx  .   With  perceived  model  )(~},3,2{ ii yxi solves  

 

   ][
)(

)|(
)(~/

i
os

o
i

yxc

i RE
aa

adtyttg
ii

i





                          (4) 

 
where  ,2  and 03   
 
Obviously,  the  left-hand  side  in  (4)  is  decreasing  in )(~

ii yx .  The  overbooking  
level  can be  found  via  a  classical  search  procedure.   The  solution  )(~

ii yx  found  
in  the  proposition may  be  not  be  an  integer.  If  an  integer  overbooking  level  is  
desired,  one  could  set  it  to        iiiiiiiiii yyxfyyxfyx )(~,)(~minarg)(~  . 
 
 
3 Iterative Process 
 
Suppose  that  the  airline  operates  many  repeat  flights.   With  each  perceived  
model,  an "optimal" overbooking level depends on the show-up rate distribution, 
whose parameters are  periodically  forecasted  from  the  historical  data.  As  new  
data  become  available,  the airline updates the parameters of the show-up rate 
distribution, the overbooking level is chosen  with  respect  to  the  updated  
distribution,  and  the  process  continues.   These  are sometimes  referred to as the 
iterative data collection-forecasting-optimization process. 
 Suppose that the airline updates information every  m flights.  Define the  t-th 
decision period to be a time in which the  t-th forecast becomes available.  Each 
period of the process consists of three steps:  optimization, data collection, and 
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forecasting, respectively.  
 At the beginning the t-th period, the forecast for three perceived models are 

),(),,(, 3
2

21 tttttttt bayyy    . In the optimization step, the overbooking model 
i  is )(*

iti yx . In the  data-collection  step,  the  airline  with  perceived model i  realize 
m  show demands },...,1:{ mjsijt  , the random sample from the actual distribution 

[the binomial distribution with parameter )(*
itit yx and  ]. The realized show-up rate 

are },...,1:{ mjrijt   where )(*
itit

ijt
ijt yx

sr   . In the forecasting step, the  show-up  rate  

for the  next  decision  period  is  forecasted  based  on  the  simple  exponential  
smoothing  technique:  itiititi yry )1(ˆ1,     where i (0, 1) is the smoothing 
parameter, and itr̂  is  the  maximum  likelihood  estimator  (MLE)  of  the  parameters  
of the  show-up  rate  distribution,  determined  from  the  realized  show-up  rate 

},...,1:{ mjrijt  . For instance, with perceived model 1, tt rr 11̂  , with perceived  

model 2,   
 






















 )(,ˆ

2

1
22
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 the MLEs of the parameter ),( 2 of 

normal show-up rate distribution, where 
m

r
r

m

j
jt
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 1

1

1
. We restrict our attention to the 

exponential smoothing method, because of its simplicity and popularity in practice 
(Makridakis et al. 1998  p.  514),  and  to  the  maximum  likelihood  estimator,  
because  it  is  one  of  the  most  widely  used  methods  of  estimation  in  statistics  
(DeGroot  and  Schervish  2002  p.  355). After obtaining the new forecast 1, tiy , the 

process continue with the optimization step in period )1( t  to determine )( 1,
*

1,  titi yx , 
and so on.  
 
 
4 Numerical Experiment  
 
In this section, two sets of numerical experiments are conducted.  In the first set, we 
study the asymptotic behavior of the perceived model as the number of decision 
periods in the iterative process becomes very large.  In the second set, we compare the 
per-flight costs if the airline implements the overbooking level from each of the three 
perceived models.  To estimate  the  expected  costs,  we  perform a  Monte  Carlo  
simulation.  With  the  perceived models, the parameters of the show-up rate 
distribution are updated every m = 30 flights,  and the smoothing parameters are  

321   = 0.5. 
 
4.1 Asymptotic Behavior Investigate  
 
Data for our numerical experiments are obtained from one of the leading passenger 
airlines in  Thailand.   We  consider  a  single-leg  weekly  flight  with  capacity  c  =  
338  seats.   The airline  sets  the  per-unit  oversale  and  spoilage  costs  to    
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 os aa 4800, which  is  the reference  fare  of  the  flight.   With  the  actual  model,  
given  the  overbooking  level  x  the show demand follows the binomial distribution 
with parameters x  and   = 0.945.  
 We  report  only  the  study  of  the  deterministic  model  (perceived  model  
1),  because the  asymptotic  behaviors  of  the  other  perceived  models  look  
similar.   Figure  1  shows four  samples  paths,  when  the  initial  show-up  rates  are  
0.945,  0.945,  0.875  and  0.875, respectively  (as  indicated  in  the  legend  of  the  
figure).  From  Figure  1a (see appendix),  the  sequence  of the  overbooking  levels  
does  not  converge.   For  instance,  when  the  initial  show-up  rate is  1  =  0 .945,  
the  last  five  overbooking  levels  of  the  first  sample  path  (the  solid  line) are  
357, 357, 357, 357, 358, whereas those of the second sample path (the dotted line) are  
357, 358, 358, 357, 358.         
 Figure 1b (see appendix) suggests that two sample paths of the average costs 
corresponding to  1  = 0 .945 converge,  and so do the other two corresponding to  

2 = 0.875.  Moreover, all four sample  paths  of  the  average  costs  converge  to  a  
single  number,  which  is  approximately 16600.  With  different  show-up  rates,  the  
sequences  of  the  average  costs  do  converge  to the same point.  When many 
replications are carried out, the figure (not shown) suggests that almost  all sample  
paths  converge  to  a  single  point.  We  conclude  that the long-run average  cost  
converges  to  a  constant  with  probability  one.    Nevertheless,  it  does  not 
converge  to  the  optimal  cost  based  on  the  actual  model,  which  is  16522.26.  
Hence,  the perceived  model is not robust to the misspecification error.  
 
4.2 Performance Evaluation 
 
In  the  second  set  of  experiments,  let  m = 30,  and  c = 338  (as  in  the  first  set).  
Let  the initial  forecasts  for  the  three  perceived  models  be  1  =  0 .945,  

),( 2
11   (0.945, 0.026) and ),( 11 ba  (62.327, 3.855).  The  rest of the  problem 

parameters,  namely  the show-up probability    and the pair of oversale and spoilage 
costs ),( os aa , are varied systematically according  to  the  3x 1  factorial  experiment.   
The  first  factor-the  show-up  probability - has  3  levels   {0.8, 0.5, 0.3}   and  the  
second  factor-the  cost  parameters-has  1  levels ),( os aa {(4800,4800)} .  The 
problem parameters for all three experiments  are shown in Table 1a (see appendix) .  
 In each simulation replication, we fix the number of decision periods to be 
200.  (From Figure 1b, the average cost for a given initial show-up rate has already 
settled down since the  200-th  decision  period.)  The  number  of  simulation  
replications  is  chosen  such  that the length  of the 95% confidence  interval  is 
within  10% of  the estimated  cost.  Table  1b (see appendix)  shows the optimal 
expected cost based on the actual model, the estimated cost when the airline uses the 
overbooking level from the perceived model, the corresponding standard error,  and  
the  percent  difference  between  the  estimated  cost  and  the  optimal  expected cost.  
 In  each  of  the  three  experiments,  the  estimated  cost  with  the  
deterministic  model (perceived model 1) is highest among the three perceived 
models.  The percent difference with  perceived  model  1  ranges  from  7  to  25.  
Recall  that  the  deterministic  model  takes into  account only the forecasted show-up  
rate, whereas  the other perceived  models take into account not only the forecast but 
also the cost parameters.  Thus, our result that the  deterministic  model  performs  
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worst  is  not  surprising.   Nevertheless,  when  the  show-up probability  is  high  (  
=  0.8),  the  largest  percent  difference  is  no  more  than  7,  which might  not  be  
really  bad  from  some  RM-industry  viewpoints.  This  together  with  its  
simplicity  appeals to some RM practitioners.  
 In  each  of  the  three  experiments,  the  estimated  cost  with  the  beta  
model  (perceived model  3)  is  lower  than  that  with  the  normal  model  (perceived  
model  2).    With  the beta  distribution,  the  percent  diference  ranges  from  4  to  
13,  whereas  it  ranges  from  6 to  25  with  the  normal  distribution.   From  our  
experiences  in  running  these  numerical experiments, the computational times of 
both models are not much different.  Hence, the beta show-up rate might be  preferred 
to the normal show-up rate, since it yields a lower expected cost.  
 From Table 1b, the percent diference increases as the show-up probability 
decreases. For instance, with   os aa 4800 and with perceived model 3, the percent 
diference increases from 4 to 9 to  13, when the show-up probability decreases from 
0.8 to 0.5 to 0.3.  If the airline anticipates a high show-up probability, then making an 
overbooking decision  with  the  perceived  model  might  be  acceptable;  however,  if  
it  anticipates  a  low show-up  probability,  the  airline  needs  to  be  very  cautious  
using  the  overbooking  level recommended by the perceived model, since the 
performance of the perceived model gets worse when the show-up probability 
decreases.  
 
 
5 Concluding Remarks  
 
Overbooking  is one of  the core components  of passenger  airline  RM. Major 
airlines  employ commercial RM systems to assist them in making overbooking 
decisions.  According to  several  journal  articles,  some  overbooking  models  in  
practice  assume  that  the  show demand is the product of the overbooking level and 
the show-up rate.  However, it follows from  probability  theory  that  the  random  
show  demand  follows  a  binomial  distribution, when each reservation shows up 
independently and with the same probability.  The product form specified in the 
airline's decision model is incorrect, and a model misspecification occurs.  In this 
article, we explore the consequences of the modeling error. 
 We  use  Monte  Carlo  simulation  to  estimate  the  per-flight  cost  when  the  
perceived model is employed.  We consider three show-up rate distributions,  namely 
normal, beta, and degenerate.  The show-up rate parameters are periodically updated 
from the historical records.  From the first set of the experiments, we find that the 
long-run average cost with the deterministic model converges to a single point with 
probability one, regardless of the initial show-up rates.  In the second set of the 
experiments, the percent diferences from the optimal solution range from 4 to 45.  The 
smallest diference corresponds to the beta  model,  whereas  the  largest  to  the  
deterministic  model.   Furthermore,  the  percent difference increases  as the show-up 
probability decreases.  
 There  are  several  possible  extensions  to  this  article.  For  example,  how  
often  should the  airline update  the show-up  rate parameters?  Which forecasting  
technique  would  be robust  to  the  model  misspecification?   If  the  airline  is  
endowed  with  the  specification test, how long would it take to detect the modeling 
error?  We hope to explore these and other related questions in the future.  
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Appendix 
 
Proof of proposition 1. It follows from pp. 640-641 in Talluri and van Ryzin (2004) 
that ]))([( 0

 cxSE  is convex in x . Recall that sa , 0a   0. Then, )(0 xf  is convex in 

x ; see Bazaraa et al. (2006) p.148. Thus, *
0x = argmax x{  }0)1()(: 00  xfxf  

 
Proof of proposition 2. With perceived model 1, the objective function in (2) 
becomes  
 

                          )|(1 xf  = 
















cxifcaaxa

cxifxa

os

s

)(0

 

 
 
It  is strictly decreasing on ],( 

c   and strictly increasing on ),( 
c . Clearly, a  

minimum  occurs at the  kink  
c .  For each  i {2, 3} , similar  arguments  as in the  

proof of Proposition 1 reveal that  )|( ii yxf is convex in  x .  The optimality condition 
states that the  first  derivative  is  equal  to  zero.    After  applying  Leibniz'  rule  and  
some  algebraic simplifications,  we obtain (4).  
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Figure 1a  

 
 

(a) Overbooking levels 
 
Figure 1b 

 
(b) Average costs 

Figure 1: Some sample paths with perceived model 1 
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Table 1a  
 

 \ ),( os aa  (4800,4800) 
0.8 Ex.1 
0.5 Ex.2 
0.3 Ex.3 

 
(a)  Problem  parameters  for  all  three  experiments 

 
 
Table 1b  

  
(b)  Costs  associated  with  overbooking levels  from  perceived  models 

 
Table 1:  Performance of perceived  models 
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